整合分析单细胞和大块组织RNA-seq揭示了肿瘤异质性以及m2型肿瘤巨噬细胞在三阴乳腺癌中的浸润和侵袭性

Integrated analysis of single-cell RNA-seq and bulk RNA-seq unravels tumour heterogeneity plus M2-like tumour-associated macrophage infiltration and aggressiveness in TNBC5.442Cancer Immunol Immunother . 2020 Jul 17. doi: 10.1007/s00262-020-02669-7. Online ahead of print.

Abstract

Triple-negative breast cancer (TNBC) is characterized by a more aggressive clinical course with extensive inter- and intra-tumour heterogeneity. Combination of single-cell and bulk tissue transcriptome profiling allows the characterization of tumour heterogeneity and identifies the association of the immune landscape with clinical outcomes. We identified inter- and intra-tumour heterogeneity at a single-cell resolution. Tumour cells shared a high correlation amongst stemness, angiogenesis, and EMT in TNBC. A subset of cells with concurrent high EMT, stemness and angiogenesis was identified at the single-cell level. Amongst tumour-infiltrating immune cells, M2-like tumour-associated macrophages (TAMs) made up the majority of macrophages and displayed immunosuppressive characteristics. CIBERSORT was applied to estimate the abundance of M2-like TAM in bulk tissue transcriptome file from The Cancer Genome Atlas (TCGA). M2-like TAMs were associated with unfavourable prognosis in TNBC patients. A TAM-related gene signature serves as a promising marker for predicting prognosis and response to immunotherapy. Two commonly used machine learning methods, random forest and SVM, were applied to find the genes that were mostly associated with M2-like TAM densities in the gene signature. A neural network-based deep learning framework based on the TAM-related gene signature exhibits high accuracy in predicting the immunotherapy response.   

Keywords: M2-like tumour-associated macrophages (M2-like TAMs); Prognosis; Triple-negative breast cancer (TNBC); Tumour heterogeneity; Tumour-infiltrating immune cells.

单细胞测序是什么?也许你不知道单细胞测序的具体操作,但肯定知道单细胞测序的研究是如今炙手可热的领域。各种高水平期刊中,不乏单细胞测序的身影。它不仅它还,少则几万多则几十万的测序费用,要不是贫穷限制了我的发挥,小编已经感觉CNS在向我招手了。囊中羞涩但是又想做前沿的科研工作,想做单细胞怎么办?公共数据库挖掘单细胞数据加生信分析是你不二的选择。今天这篇文章利用公共数据库单细胞数据加上RNA-seq数据,结合优秀的生信分析,轻松实现5+文章。


一、 摘要:

三阴性乳腺癌(TNBC)的特征是更具侵略性的临床过程,具有广泛的肿瘤间和肿瘤内异质性。作者以单细胞数据鉴定了肿瘤间和肿瘤内的异质性。发现M2型肿瘤相关的巨噬细胞(TAM)构成了大多数巨噬细胞,并表现出免疫抑制特性。因此作者利用TCGA数据评估了TAM的免疫浸润程度,并且基于免疫浸润进行分组,预后分析以及marker识别。


二、材料方法:

1、数据集:三阴乳腺癌两套单细胞测序数据,bulk-RNA-seq数据来自TCGA和GEO。

2、数据处理:Seurat处理单细胞测序数据。

3、数据分析:ssGSEA计算hallmark富集得分,斯皮尔曼相关,cibersort计算免疫浸润水平,WGCNA筛选TAM共表达基因,生存分析,随机森林,SVM,神经网络构建分类器。


三、结果:

1、TNBC细胞的肿瘤细胞异质性。每个患者肿瘤细胞高度聚集,TNBC的复发与EMT、细胞干性相关,因此计算了三者之间的相关性,都是正相关。


2、TNBC免疫细胞异质性。免疫细胞分为三类,与T、B和巨噬细胞非常契合。因此对三种细胞的功能状态和相关基因表达做了展示。


i. T细胞功能状态以及相关基因的表达。


ii. B细胞功能状态以及相关基因的表达。


iii. 巨噬细胞中有更多的M2特征。


3、作者以巨噬细胞为桥接,利用cibersort计算TCGA m2型巨噬细胞免疫浸润水平进行高低水平间生存分析。WGCNA识别TAM相关模块。Hub基因单因素cox回归,筛选到146个基因。146个基因预后风险得分与生存分析。风险得分ssGSEA,得分与通路之间的关系。


4、亚型识别,基于146基因进行聚类分析。


5、随机森林和SVM筛选与m2型TAM免疫评分最相关的基因。


6、TAM相关基因预测免疫治疗反应,人工神经网络构建分类器。


总结

总体上说,文章以单细胞数据开头,分析了免疫细胞的异质性,以巨噬细胞为桥接,巧妙的从单细胞数据跳跃到了TCGA和GEO的RNA-seq数据,并以此开展了后续的一系列生信分析。还在纠结没钱做单细胞测序的你,何不试试公共数据加生信分析的思路呢?

转自生信人

分享