来源:中山大学肿瘤防治中心
徐瑞华教授与团队成员进行项目研究分析
该研究构建了基于云技术的多中心上消化道癌内镜AI诊断平台,平台可以自动捕获内镜检查图像上传至云端进行AI分析,实时向操作者反馈提示可疑病灶区域,指导操作者更有针对性的选择活检部位,提高活检阳性率。
值得一提的是,该系统还集成了培训功能,临床医生可以通过复习并重新评估已存储的图片,来进行模拟诊断积累经验,提高技术水平,减少上消化癌的漏诊率。并可通过建立的开放性百万级大规模内镜图像数据库(存储内镜图片超过100万张),对初级医生及研究者进行内镜诊断培训。临床医生和患者还可通过公共网站(http://graids.sysucc.org.cn),免费访问开放共享的GRAIDS系统,并根据提示自行上传内镜图片,重新评估已有诊断的准确性。
GRAIDS系统在内镜检查中实时识别上消化道癌性病变
多中心人工智能内镜辅助诊断云平台的三大功能—指导诊断、专业培训和开放共享
通过前期完成的5万余张上消化道癌患者和12万余张正常人内镜图像数据的识别和深度学习,该系统对癌变的诊断准确率可以达到96%,对早期(I期)病变的识别率可以达到90%以上,初步显示出应用于上消化道癌早诊的巨大潜力。
为了对该系统的性能进行深入的验证,由中山大学肿瘤防治中心牵头联合全国5家不同地区、不同级别的医院进行多中心研究,采用该系统对其提供的来自84,424例患者的共1,036,496张内镜图像进行了识别和分析。最终结果显示该系统对上消化道癌的诊断准确率达90%以上,其中内部数据验证诊断准确率为95.5%,前瞻性数据验证诊断准确率为92.7%,外部数据验证诊断准确率为91.5%至97.7%,其诊断灵敏度(94.2%)与专家级的内镜医师(94.5%)相当。更重要的是,在GRAIDS的帮助下,可提升专家的诊断灵敏度至0.984,而低年资医生的诊断灵敏度将提升到与专家独自判读时相当的效果。这一鼓舞人心的结果显示,该系统的推广相当于为基层医院送去了一位内镜专家,在有效帮助基层医院内镜医师提高上消化道癌的诊断准确率的同时,还显著的节约了内镜检查时间、提高了检查效率。
中山大学肿瘤防治中心还充分利用泛中南地区肿瘤专科联盟这一平台,与8省15家医院签署了《上消化道肿瘤人工智能诊疗决策系统的研发及推广应用》合作协议,希望能进一步整合联盟单位的临床资源和数据信息,加快该系统的完善和推广应用。接下来还将进一步建立上消化道肿瘤诊疗相关多场景、多模态的人工智能诊疗模型和应用系统,形成全国首个覆盖常见上消化道肿瘤筛查、诊断、治疗全过程的人工智能诊疗决策系统,并对社会开放共享。目前,该系统已首批在梧州市红十字会医院、揭阳市人民医院、粤北人民医院、普宁市人民医院和江西省肿瘤医院落地应用,并将在泛中南地区肿瘤专科联盟成员单位进一步推广应用,这对于提高我国上消化道肿瘤的早诊早治水平、促进肿瘤规范化治疗、推动分级诊疗的实现,将具有十分重大的意义。
GRAIDS在基层医院的推广应用情况