反向GSEA-通过整合的网络和转录组分析筛查阿尔兹海默症新型候选药物

Screening novel drug candidates for Alzheimer's disease by an integrated network and transcriptome analysis5.61Bioinformatics . 2020 Jun 9;btaa563. doi: 10.1093/bioinformatics/btaa563. Online ahead of print.

Abstract

Motivation: Alzheimer's disease (AD) is a serious degenerative brain disease and the most common cause of dementia. The current available drugs for AD provide symptomatic benefit, but there is no effective drug to cure the disease. The emergence of large-scale genomic, pharmacological data provides new opportunities for drug discovery and drug repositioning as a promising strategy in searching novel drug for AD.   Results: In this study, we took advantage of our increasing understanding based on systems biology approaches on the pathway and network levels and perturbation data sets from the Library of Integrated Network-Based Cellular Signatures (LINCS) to introduce a systematic computational process to discover new drugs implicated in AD. Firstly, we collected 561 genes that have reported to be risk genes of AD, and applied functional enrichment analysis on these genes. Then, by quantifying proximity between 5595 molecule drugs and AD based on human interactome, we filtered out 1092 drugs that were proximal to the disease. We further performed an Inverted Gene Set Enrichment analysis on these drug candidates, which allowed us to estimate effect of perturbations on gene expression and identify 24 potential drug candidates for AD treatment. Results from this study also provided insights for understanding the molecular mechanisms underlying AD. As a useful systematic method, our approach can also be used to identify efficacious therapies for other complex diseases.

阿尔兹海默症(AD)作为一种严重的变性脑疾病,是痴呆症的最常见原因。但是目前尚无有效药物对症治疗。本文基于网络药理学,PPI网络,反向GSEA确定了24种潜在候选AD药物。

一、 材料方法:

1、数据集:KEGG、OMIM、Genotype Integrator数据库收集AD相关基因,DrugBank获取药物-靶点数据,STRING、PINA、HuRI数据库获取PPI互作数据。
2、数据处理:基于距离衡量药物与AD的接近度(详细公式见参考文献),从LINCS获取药物治疗与相关基因表达数据集,构建反向GSEA。
3、数据分析:使用了GSEA、cytoscape等方法。

二、结果:

1、文章整体真的不算复杂,第一个结果甚至连图都没有,描述了收集到的AD相关基因数目以及GO富集分析结果。

2、第二个结果展示了药物靶点与AD相关蛋白的距离分布,目的是为了筛除与AD无关的药物,最终得到一千多个药物。


3、第三个结果便是通过反向GSEA鉴定出的24个药物的展示。


总结

是不是很诧异,这就没啦?就文章而言,确实只有三个结果,图倒是还有两张,都是流程图。纯生信,没有实验,是不是觉得自己又行了,普通非肿瘤研究这样就能发到5。是不是又燃起了科研的斗志,错过这一次,不知又要等多久,何不现在就行动!

转自生信人

分享