Survival-associated alternative splicing signatures in non-small cell lung cancer
Aging (Albany NY). 2020 Apr 13;12(7):5878-5893. doi: 10.18632/aging.102983.
Abstract
Alternative splicing (AS) is fundamental to transcriptome and proteome richness, and data from recent studies suggested a critical association between AS and oncogenic processes. To date, no systematic analysis has been conducted on AS from the perspective of different sexes and subtypes in non-small-cell lung cancer (NSCLC). Thus, we integrated the information of NSCLC patients from The Cancer Genome Atlas (TCGA) and evaluated AS profiles from the perspectives of sex and subtype. Eventually, a total of 813 and 1020 AS events were found to be significantly related to the overall survival (OS) of lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) patients. Four prognostic prediction models performed well at 1, 3, and 5 years, with an area under the receiver operating characteristic (ROC) curve (AUC) greater than 0.75. Notably, we explored the upstream splicing factors (SFs) and downstream regulatory mechanisms of the OS-associated AS events and verified four differentially expressed alternative splicing (DEAS) events via qPCR. These findings can provide important guidance for subsequent studies. In addition, we also constructed nomograms to facilitate early screening by clinicians and to determine patient outcomes in NSCLC.
Keywords: LUAD; LUSC; TCGA; alternative splicing (AS).
3.NSCLC中与生存相关的AS事件和功能富集分析
在单变量Cox回归分析中确定与总体生存期(OS)相关的可变剪切事件,在LUAD组中,识别到男性中的286个生存相关的AS事件,女性中的582个生存相关的AS事件,而在LUSC组中,识别到男性中的912个生存相关的AS事件和女性LUSC组中的113个生存相关的AS事件。
同时通过功能和途径富集分析进一步评估所有相应基因,如图3所示。
4.非小细胞肺癌患者预后模型的构建
使用每个队列分析后,构建了四个复合模型,复合模型的Kaplan-Meier生存分析表明,在区分两组的好坏结果方面具有相当大的优势(p<0.0001,图4)。最终模型对患者存活,风险评分和剪接模式进行分类的能力如图5所示。此外,还生成了1至5年的接收器工作特征(ROC)曲线,并计算了曲线下的面积(AUC)。如图4所示,最终的复合模型显示出强大的预测能力,并且从1年到5年,每组的AUC均超过0.75。
5.AS临床病理列线图
为了扩展AS事件的应用,我们尝试建立列线图以将AS事件与临床治疗联系起来。最终,模型中包括的临床病理变量包括年龄,病理阶段,T阶段,N阶段,M阶段和最终的复合模型(图6A-6D)。我们将AS模型的风险评分分为四个级别,以确保列线图的实用性。此外,列线图的校准曲线在预测和实际预后之间显示出良好的一致性(图6E-6H)。
此外,在LUAD组中,男性的OS预测一致性指数(C-index)为0.777(95%置信区间(CI):0.748-0.806),女性为0.827(95%CI:0.796-0.858);在LUSC组中,男性为0.729(95%CI:0.704-0.754),女性为0.843(95%CI:0.813-0.873)。
总而言之,结果表明构造的列线图在临床实践中具有巨大的应用潜力。
6.潜在的差异表达SF监管网络建设
为了探索AS调节的上游机制,我们分析了来自TCGA数据库的SF的RNA测序数据。在男性LUAD,女性LUAD,男性LUSC和女性LUSC组中,分别有26、27、37和31个SF存在显着不同。随后,在DESF和DEAS事件之间进行了相关分析,结果如图7所示。对于DESF,外围的红色点表示上调(对数倍数变化(FC)> 1),而蓝色点表示下调(logFC <1)。对于DEAS事件,中心的红色圆点表示预后较差(HR>1),而蓝色圆点表示临床预后较好(HR <1)。
7.通过实时定量PCR验证组织中的DEAS事件
为了验证生物信息学分析的准确性,我们收集了成对的组织样本进行进一步验证,在LUAD中,包括男性的20对组织样本,女性的20对组织样本,以及在LUSC中,男性的10对组织样本,女性的10对组织样本。我们从每个AS模型中选择了四个DEAS事件进行进一步验证,最终生成了箱形图以说明qPCR结果(图8)。这四个DEAS事件的比率在肿瘤组织中显着上调,这表明这些DEAS事件的增加将影响肿瘤的产生。重要的是,这些发现为我们接下来将进行的更详细的功能测试提供了重要的指导。
通过上述的解读我们发现,这篇文章相较于之前的课程主要有两方面的改变,一是分析主体从常见的癌症与正常对照细化为了性别的对照,分析方向更巧妙;二是增加了方法5部分AS临床病理列线图相关的分析,尝试将AS事件与临床治疗联系起来,使文章的内容更加丰富。