多组学+泛癌|戒烟有益于癌症患者生存

The benefits of smoking cessation on survival in cancer patients by integrative analysis of multi-omics data6.574Mol Oncol . 2020 Jun 24. doi: 10.1002/1878-0261.12755. Online ahead of print.

Abstract

Few studies have examined the association between smoking status (including former smokers) at diagnosis and overall survival among cancer patients. We aimed to assess the benefits of quitting smoking on cancer prognosis in cohorts of cancer patient smokers obtained from the Cancer Genome Atlas (TCGA) database. Hazard ratios (HR) were calculated to evaluate smoking behavior at cancer diagnosis (reformed smokers vs. current smokers) in association with overall survival using multivariate-adjusted Cox regressions analysis. According to our analyses, quitting smoking was the independent protective factor for overall survival in lung squamous cell carcinoma (LUSC) (HR = 0.67, 95% CI = 0.48-0.94). Comprehensive analysis of multicomponent data across reformed and current smokers identified a total of 85 differential expressed genes (DEGs) affected by different modes of genetic and epigenetic regulation, potentially representing cancer drivers in smokers. Moreover, we provided a smoking-associated gene expression signature, which could evaluate the true effect on prognosis with high power (HR = 1.70, 95% CI = 1.19-2.43, AUC = 0.65, 0.67, and 0.70 for 2-, 3-, and 5-year survival, respectively). This signature was also applicable in other smoking-related cancers, including bladder urothelial carcinoma (HR = 1.70, 95% CI = 1.01-2.88), cervical carcinoma (HR = 5.69, 95% CI = 1.37-23.69), head and neck squamous cell carcinoma (HR = 1.97, 95% CI = 1.41-2.76), lung adenocarcinoma (HR = 1.73, 95% CI = 1.16-2.57), and pancreatic adenocarcinoma (HR = 4.28, 95% CI = 1.47-12.47). In conclusion, this study demonstrates that quitting smoking at diagnosis decreases risk of death in cancer patients. We also provide a smoking-associated gene expression signature to evaluate the effect of smoking on survival. Lastly, we suggest that smoking cessation could comprise a part of cancer treatment to improve survival rates of cancer patients.   

Keywords: current smokers; prognosis; smoking cessation; smoking signature; true effect.

数据下载
数据库:TCGA公共数据库
癌症类型: 膀胱尿路上皮癌(BLCA)、宫颈鳞状细胞癌和宫颈内腺癌(CESC)、食道癌(ESCA)、头颈鳞状细胞癌(HNSC)、肺腺癌(LUAD)、肺鳞状细胞癌(LUSC)和胰腺腺癌(PAAD
数据信息:基因表达RNAseqHTSeq-FPKMmiRNA表达RNAseqIllumina HiSeq、体细胞突变数据(SNV)、拷贝数变异数据(CNV)、DNA甲基化数据((Illumina Human Methylation 450))、临床信息
分析流程
结果展示
1.戒烟可以显著改善癌症患者的预后
作者在多种癌症中分析了吸烟状态和患者总生存率之间的的关系(1)。结果发现,戒烟与CESCHNSCLUSCPAAD中更长的生存时间显著相关,多变量分析表明在LUSC患者中,戒烟是影响预后的独立保护因素。

2. 差异表达基因分析
接下来,作者分析了戒烟患者和吸烟患者之间差异表达的mRNAlncRNAmiRNA。共鉴定出2899DEGs(797下调和2102上调)( A)48个差异表达的miRNA(20下调和28上调)( B)1326个差异表达的lncRNA(1207下调和119上调)( C)

3.体细胞突变差异分析
为了揭示相关的遗传变异,作者分析了吸烟者与戒烟者之间的体细胞突变。发现71个基因的突变频率存在显著性差异,包括10DEGs,其中GPATCH8(P = 0.037)ZFC3H1(P = 0.034)的表达与它们的体细胞突变显著相关。

4. 拷贝数差异分析
作者共发现了781个具有不同CNV的基因,它们的拷贝数增加或减少主要集中19117号在染色体上,同时作者还评估了CNV 94 DEGs转录的影响,其中73 DEGs的表达与CNV密切相关。

5. DNA甲基化差异分析

为了探讨吸烟对DNA甲基化的影响,作者分析了基因甲基化水平。与吸烟者相比,作者在戒烟者中发现了964个具有不同DNA甲基化的基因,其中10DEGs的表达与甲基化水平显著相关,包括HOXB2(Cor = -0.728P   <0.001)PTHLH(Cor -0.565P<0.001)


6. ceRNA网络的构建
接下来,作者使用差异表达的lncRNAmiRNA和关键DEGs构建了ceRNA网络。基于lncRNA-miRNAmiRNA-mRNA链接,建立了lncRNA-miRNA-DEGs复杂网络(69lncRNA5miRNA13DEGs)来总结吸烟者的潜在分子特征。


7. LUSC中免疫细胞类型组分的估计
作者使用三种不同的算法评估了免疫细胞的丰度。发现戒烟患者中免疫细胞的分布与吸烟患者存在较大差异包括CD8 + T细胞(TIMER),滤泡辅助性T细胞(CIBERSORT)γ-δT细胞(CIBERSORT)M0巨噬细胞(CIBERSORT)中央记忆CD4 + T细胞(XCELL)中央记忆CD8 + T细胞(XCELL)

8. 吸烟签名的构建和验证
接下来,作者通过单变量Cox回归分析和LASSO-COX分析识别关键的预后指标,并建立了吸烟签名模型。吸烟签名=0.5410×(吸烟状态)+ 0.3278×ZFC3H1 | snv + 0.2153×GPATCH8 | snv + 0.3625×NOL8 | cnv + -0.5947×RPL10A | cnv + -0.3870×滤泡辅助性T细胞(CIBERSORT)+ 0.5414×M0巨噬细胞(CIBERSORT)+ 0.1420×中央记忆CD8 + T细胞(XCELL)
结果表明,吸烟患者的吸烟签名分布明显高于吸烟者(P<0.001)(图A)K-M曲线显示高吸烟特征患者的预后较差(P<0.001(B)ROC曲线证明吸烟签名模型具有较好的2年,3年和5年生存预后预测能力(C)。单因素和多因素Cox回归分析表明,吸烟签名可能成为潜在的独立预后指标(P<0.001(DE),同时构建了将LUSC吸烟者的吸烟签名和临床信息相结合的预后列线图( F),列线图的校准曲线显示出预测和观察之间的良好一致性(G)


为了确认吸烟签名的适用性和可靠性,作者在各种癌症中进行了验证。结果表明,在年龄校正模型中,吸烟特征与BLCACESCHNSCLUADLUSCPAAD的总体生存率显著相关。在多变量调整模型中,吸烟签名较高的患者比吸烟签名较低的患者具有更高的危险率( HNSC[HR = 1.9795CI = 1.41–2.76]LUAD[HR = 1.7395CI = 1.16–2.57]LUSC[HR = 1.7095CI = 1.19–2.43]PAAD[ HR = 4.2895CI = 1.47–12.47])

写在最后

近年来,关于生物信息学挖掘的文章日益增多,我们的文章若想脱颖而出,就必须独具一格,在本文中作者通过纯生信分析就能够发表影响因子6+的文章,其中必定有许多值得我们借鉴的地方。本研究不仅涵盖了差异表达基因、体细胞突变、拷贝数变化以及DNA甲基化等常规生信分析,还建立了lncRNA-miRNA-DEGs复杂网络,最重要的是构建了癌症患者吸烟签名模型(这个signature跟普通的可不一样,囊括了关注指标状态、拷贝数、突变、浸润信息),同时在多种癌症中进行了验证,研究内容十分丰富,结果可靠。可见,我们在平时的生信分析中也可以采用这种多组学联合分析的手段,适当增加研究癌种类型,提高文章的可读性和可信度。

转自生信人

分享