DCA Analysis(DCA分析)
RDA或CCA模型的选择原则:先用Species Table数据做DCA分析,看分析结果中Axis lengths的第一轴的大小,如果大于4.0,就应该选CCA,如果3.0-4.0之间,选RDA和CCA均可,如果小于3.0,RDA的结果要好于CCA。
输入:
Species Table文件,由分析模块 "Summary the representation of taxonomic groups" 生成。
输出:
DCA分析结果文件:
Call:
decorana(veg = t(spe))
Detrended correspondence analysis with 26 segments.
Rescaling of axes with 4 iterations.
DCA1 DCA2 DCA3 DCA4
Eigenvalues 0.8848 0.04847 0.04503 0.0450291
Decorana values 0.8988 0.04761 0.01260 0.0003008
Axis lengths 5.4127 0.49367 0.48190 0.4818986
这里Axis lengths的第一轴的大小为5.4127,适合于CCA分析。
分析模块引用了R语言(v2.12.1)vegan包(v2.0-1)中的DCA分析。
相关文献如下所示:
Hill, M.O. and Gauch, H.G. (1980). Detrended correspondence analysis: an improved ordination technique. Vegetatio 42, 47–58.
Oksanen, J. and Minchin, P.R. (1997). Instability of ordination results under changes in input data order: explanations and remedies. Journal of Vegetation Science 8, 447–454.