DCA分析

DCA Analysis(DCA分析)


RDACCA模型的选择原则:先用Species Table数据做DCA分析,看分析结果中Axis lengths的第一轴的大小,如果大于4.0,就应该选CCA,如果3.0-4.0之间,选RDACCA均可,如果小于3.0RDA的结果要好于CCA


输入:

Species Table文件,由分析模块 "Summary the representation of taxonomic groups" 生成。


输出:

DCA分析结果文件:

Call:

decorana(veg = t(spe))

Detrended correspondence analysis with 26 segments.

Rescaling of axes with 4 iterations.

                 DCA1    DCA2    DCA3      DCA4

Eigenvalues     0.8848 0.04847 0.04503 0.0450291

Decorana values 0.8988 0.04761 0.01260 0.0003008

Axis lengths    5.4127 0.49367 0.48190 0.4818986

这里Axis lengths的第一轴的大小为5.4127,适合于CCA分析。


分析模块引用了R语言(v2.12.1vegan包(v2.0-1)中的DCA分析。


相关文献如下所示:

Hill, M.O. and Gauch, H.G. (1980). Detrended correspondence analysis: an improved ordination technique. Vegetatio 42, 47–58.

Oksanen, J. and Minchin, P.R. (1997). Instability of ordination results under changes in input data order: explanations and remedies. Journal of Vegetation Science 8, 447–454.



分享
上一篇:RDA分析